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1 Introduction

DNA technology is reaching the point where one can envision automatically compiling
high-level formalisms to DNA computational structures [25]. Examples so far include
impressive demonstrations of `manual compilation' of automata and Boolean networks
[2,12,20,21]. In addition to such sequential and functional computations, realized by
massive numbers of molecules, we should also strive to take direct advantage of the
massive concurrency available at the molecular level. To that end it should be useful to
consider concurrent high-level formalism, in addition to sequential ones. In this paper
we describe three compilation processes for concurrent languages. First, we compile
a low-level combinatorial algebra to a certain class of composable DNA structures
[23]: this is intended to be a direct (but not quite trivial) mapping, which provides
an algebraic notation for writing concurrent molecular programs. Second, we compile
a higher-level expression-based algebra to the lower-level combinatorial algebra, as
a paradigm for compiling expressions of arbitrary complexity to `assembly language'
DNA combinators.

Third is our original motivation: translating concurrent interacting automata [5]
to molecular structures. How to do that was until recently unclear, because one must
decompose concurrent communication patterns into a form suitable for molecular
interactions (a quadratic process that is described in [5]), and then one must �nd
some suitable `general programmable matter' as a physical substrate. Fortunately
there has been recent progress on the latter [23], so that we can provide a solution
to this problem in Section 6.2 based on the combinatorial DNA algebra. The general
issue is how to realize the external choice primitive of interacting automata (also
present in most process algebras and operating systems), for which there is currently
no direct DNA implementation. In DNA we can instead implement a join primitive,
based on [23]: this is a powerful operator, widely studied in concurrency theory [11,18],
which can indirectly provide an implementation of external choice. The DNA algebra
supporting the translation is built around such a join operator.

We begin with an introduction to process algebras, which are formal languages
designed to describe and analyze the concurrent activities of multiple processes. The
standard technical presentation of process algebras was initially inspired by a chemical
metaphor [3], and it is therefore natural, as a tutorial, to see how the chemistry
of diluted well-mixed solutions can itself be presented as a process algebra. Having
chemistry in this form also facilitates relating it to other process algebras.

Take a set C of chemical solutions denoted by P ,Q,R. We de�ne two binary re-
lations on this set. The �rst relation, mixing, P ≡ Q is an equivalence relation: its



2

purpose is to describe reversible events that amount to `chemical mixing'; that is, to
bringing components close to each other (syntactically) so that they can conveniently
react by the second relation. Its basic algebraic laws are the commutative monoid
laws of + and 0, where + is the chemical combination symbol and 0 represents the
empty solution. The second relation, reaction, P → Q, describes how a (sub-)solution
P becomes a di�erent solution Q. A reaction P → Q operates under a dilution as-
sumption; namely, that adding some R to P does not make it then impossible for P
to become Q (although R may enable additional reactions that overall quantitatively
repress P → Q by interfering with P ). The two relations of mixing and reaction,
are connected by a rule that says that the solution is well mixed: for any reaction to
happen it is su�cient to mix the solution so that the reagents can interact.

In �rst instance, the reaction relation does not have chemical rates. However,
from the initial solution, from the rates of the base reactions, and from the relation
→ describing whole-system transitions, one can generate a continuous time Markov
chain representing the kinetics of the system. In terms of system evolution, it is also
useful to consider the symmetric and transitive closure, →∗, representing sequences
of reactions.

As a process algebra, chemistry therefore obeys the following general laws:

De�nition 1. Chemistry as a Process Algebra

P ≡ P ; P ≡ Q ⇒ Q ≡ P ; P ≡ Q,Q ≡ R ⇒ P ≡ R equivalence
P ≡ Q ⇒ P +R ≡ Q+R congruence
P +Q ≡ Q+ P ; P + (Q+R) ≡ (P +Q) +R; P + 0 ≡ P di�usion
P → Q ⇒ P +R→ Q+R dilution
P ≡ P ', P '→ Q', Q' ≡ Q ⇒ P → Q well mixing

In addition to these general rules, any given chemical system has a speci�c set of
reaction rules. For example, consider a chemical process algebra with species: H, O,
OH, H2, H2O. The set of solutions is given by those basic species, plus the empty
solution 0 and any solution P +Q obtained by combining two solutions. The mixing
relation is exactly the one above. The reaction relation is given, for example, by the
following speci�c reactions, plus dilution and well-mixing:H+H → H2;H+O → OH;
H2 + O → H2O; H + OH → H2O. The mixing and reaction relations are de�ned
inductively; that is, we consider the smallest binary relations that satisfy all the given
rules. We can then deduce, for example, that H + O + H →→ H2O, that is we
can produce water molecules in two steps (and by two di�erent paths), and that
H +H +H +H + O + O →∗ H2O +H2O. Chemical evolution is therefore encoded
in the two relations of mixing and reaction: a solution P can evolve to a solution Q
i� 〈P,Q〉 ∈ →∗.

Algebra is about equations, but in process algebra equations are usually a derived
concept. Instead of axiomatizing a set of equations, we can use the reaction relation
to study the equations that hold in a given algebra, meaning that P = Q holds if P
and Q produce the same reactions [15]. The complexity of these derived equational
theories varies with the algebra. A simple instance here is the equation P + 0 = P ,
whose validity requires verifying that in our de�nition of → there is no reaction for
0, nor for 0 combined with something else.

This way, chemistry can be presented as a process algebra. But the algebra of
chemical `+' is one among many: there are other process algebras that can suit bio-
chemistry more directly [9,19] or, as in this paper, that can suit DNA computing.
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2 Strand Algebras

By a strand algebra we mean a process algebra [15] where the main components
represent DNA strands, DNA gates, and their interactions. We begin with a non-
deterministic algebra, and we discuss a stochastic variant in Section 5. Our strand
algebras may look very similar to either chemical reactions, or Petri nets, or multiset-
rewriting systems. The di�erence here is that the equivalent of, respectively, reactions,
transitions, and rewrites, do not live outside the system, but rather are part of the
system itself and are consumed by their own activity, re�ecting their DNA implemen-
tation. A process algebra formulation is particularly appropriate for such an internal
representation of active elements.

2.1 The Combinatorial Strand Algebra, P

Our basic strand algebra has some atomic elements (signals and gates), and only
two combinators: parallel (concurrent) composition P | Q, and populations P ∗. An
inexhaustible population P ∗ has the property that P ∗ = P | P ∗; that is, there is
always one more P that can be taken from the population. The set P is formally the
set of �nite trees P generated by the syntax below; we freely use parentheses when
representing these trees linearly as strings. Up to the algebraic equations described
below, each P is a multiset, i.e., a solution. The signals x,y,... are taken from a
countable set.

De�nition 2. Syntax of Combinatorial Strand Algebra

P ::= x | [x1, .., xn].[y1, .., ym] | 0 | P1|P2 | P ∗ n ≥ 1,m ≥ 0

A gate is an operator from signals to signals: [x1, .., xn].[y1, .., ym] is a gate that binds
signals x1, .., xn, produces signals y1, .., ym, and is consumed in the process. We say
that this gate joins n signals and then forks m signals; see some special cases below.
An inert component is indicated by 0. Signals and gates can be combined into a `soup'
by parallel composition P1 | P2 (a commutative and associative operator, similar to
chemical `+'), and can also be assembled into inexhaustible populations, P ∗. Square
brackets are omitted for single inputs or outputs.

De�nition 3. Explanation of the Syntax and Abbreviations

x signal 0 inert

x1.x2 , [x1].[x2] transducer gate P1 | P2 composition

x.[x1, .., xm] , [x].[x1, .., xm] fork gate P ∗ population

[x1, .., xn].x , [x1, .., xn].[x] join gate

The relation ≡ ⊆ P×P, called mixing, is the smallest relation satisfying the following
properties; it is a substitutive equivalence relation axiomatizing a well-mixed solution
[3]:

De�nition 4. Mixing

P ≡ P equivalence P ≡ Q ⇒ P | R ≡ Q | R congruence
P ≡ Q ⇒ Q ≡ P P ≡ Q ⇒ P ∗ ≡ Q∗
P ≡ Q,Q ≡ R ⇒ P ≡ R

P ∗ ≡ P ∗ | P population
P | 0 ≡ P di�usion 0∗ ≡ 0
P | Q ≡ Q | P (P | Q)∗ ≡ P ∗ | Q∗
P | (Q | R) ≡ (P | Q) | R P ∗∗ ≡ P ∗
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The relation → ⊆ P × P, called reaction, is the smallest relations satisfying the fol-
lowing properties. In addition,→∗, reaction sequence, is the symmetric and transitive
closure of →.

De�nition 5. Reaction

x1 | .. | xn | [x1, .., xn].[y1, .., ym]→ y1 | .. | ym gate (n ≥ 1, m ≥ 0)
P → Q ⇒ P | R→ Q | R dilution
P ≡ P ', P '→ Q', Q' ≡ Q ⇒ P → Q well mixing

The �rst reaction (gate) forms the core of the semantics: the other rules allow reac-
tions to happen in context. Note that the special case of the gate rule for m = 0 is
x1 | .. | xn | [x1, .., xn].[]→ 0. And, in particular, x.[] annihilates an x signal. We can
choose any association of operators in the formal gate rule: because of the associativ-
ity of parallel composition under ≡ the exact choice is not important. Since → is a
relation, reactions are in general nondeterministic. Some examples are:

x1 | x1.x2 → x2
x1 | x1.x2 | x2.x3 →∗ x3
x1 | x2 | [x1, x2].x3 → x3
x1 | x1.x2 | x1.x3 → x2 | x1.x3 and → x3 | x1.x2
y | ([y, x1].[x2, y])∗ a catalytic system ready to transform

multiple x1 to x2 , with catalyst y

Note that signals can interact with gates but signals cannot interact with signals,
nor gates with gates. As we shall see, in the DNA implementation the input part
of a gate is the Watson-Crick dual of the corresponding signal strand, so that the
inputs are always `negative' and the outputs are always `positive'. This Watson-Crick
duality need not be exposed in the syntax: it is implicit in the separation between
signals and gates, so we use the same x1 both for the `positive' signal strand and for
the complementary `negative' gate input in a reaction like x1 | x1.x2 → x2.

3 DNA Semantics

In this section we provide a DNA implementation of the combinatorial strand algebra.
Given a representation of signals and gates, it is then a simple matter to represent any
strand algebra expression as a DNA system, since 0, P1 | P2 and P ∗ are assemblies
of signals and gates.

xh
xt xb

x

Fig. 1. Signal Strand

There are many ways of representing signals and gates as DNA structures. First
one must choose an overall architecture, which is largely dictated by a representa-
tion of signals, and then one must implement the gates, which can take many forms
with various qualitative and quantitative trade-o�s. We follow the general principles
of [23], where DNA computation is based on strand displacement on loop-free struc-
tures. Other architectures are possible, like computation with hairpins [25], but have
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not been fully worked out. The four-domain signal structure in [23] yields a full imple-
mentation of the combinatorial strand algebra (not shown here, but largely implied
by that paper). Here we use a novel, simpler, signal structure.

We represent a signal x as a DNA signal strand with three domains xh,xt,xb (Fig-
ure 1): xh = history, xt = toehold, xb = binding. A toehold is a domain that can
reversibly interact with a gate: the interaction can then propagate to the adjacent
binding domain. The history is accumulated during previous interactions (it might
even be hybridized) and is not part of signal identity. That is, x denotes the equiva-
lence class of signal strands with any history, and a gate is a structure that operates
uniformly on such equivalence classes. We generally use arbitrary letters to indicate
DNA domains (which are single-stranded sequences of bases).

a
b c

c⊥b⊥ d⊥

a

d⊥b⊥

b

c⊥

c

Fig. 2. Hybridization

A strand like b, c, d has a Watson-Crick complement (b, c, d)⊥ = d⊥, c⊥, b⊥ that, as
in Figure 2, can partially hybridize with a, b, c along the complementary domains. For
two signals x,y, if x 6= y then neither x and y nor x and y⊥ are supposed to hybridize,
and this is ensured by appropriate DNA coding of the domains [13,14]. We assume
that all signals are made of `positive' strands, with `negative' strands occurring only
in gates, and in particular in their input domains; this separation enables the use of
3-letter codes, which helps design independent sequences [14,28].

b⊥

b

t⊥

t b

t⊥

t

b⊥

b

t⊥

t b b

b⊥ t⊥

t

b⊥

b bb

Fig. 3. Strand Displacement

The basic computational step of strand displacement [23] is shown in Figure 3
for matching single and double strands. This reaction starts with the reversible hy-
bridization of the toehold t with the complementary t⊥ of a structure that is otherwise
double-stranded. The hybridization can then extend to the binding domain b by a neu-
tral series of reactions between base pairs (branch migration [26]) each going randomly
left or right through small energy hills, and eventually ejecting the b strand when the
branch migration randomly reaches the right end. The free b strand can in principle
reattach to the double-stranded structure, but it has no toehold to do so easily, so
the last step is considered irreversible. The simple-minded interpretation of strand
displacement is then that the strand t, b is removed, and the strand b is released irre-
versibly. The double-stranded structure is consumed during this process, leaving an
inert residual (de�ned as one containing no single-stranded toeholds). Figure 4 shows
the same structure, but seen as a gate G absorbing a signal x and producing nothing
(0). The annotation `xh generic' means that the gate works for all input histories xh,
as it should.
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x | x.[] → 0

G

xt
⊥ xt

⊥ xb
⊥

xt xb
xh

0

xh generic

xb

xb
⊥

xb

xh xt xb

x

Fig. 4. Annihilator

Signal toeholds do not have to be distinct for di�erent signals (with some caveats
discussed below), because what is important to signal recognition is the successful
branch migration over the binding domains: any binding mismatch there reverts by
random walk until the toeholds unbind, and any mistaken toehold match has no
consequence. Moreover the toeholds have to be short to guarantee reversibility; hence,
their number is limited, and it is necessary in general to identify some of them. The
binding regions however have no limitation, in principle, and hence can provide a very
large address space for distinct signals.

xt
⊥

xb

xb
⊥

Gb

Gt

yt

yt
⊥ yt

⊥

xh

xt
⊥ xb

⊥ yt
⊥

xt xb
xh yt

0

a fresh; xh generic
ayt

a

a⊥

a

x | x.y → y

a⊥

a

xb
⊥

xb

xt
⊥

xt

xh xt xb

x
xb yt yb

y

a⊥

a
yb

Fig. 5. Transducer

In Figure 5 we implement a gate x.y that transduces a signal x into a signal y. The
gate is made of two separate structures Gb (gate backbone) and Gt (gate trigger). The
forward Gb reaction can cause y to detach because the binding of a toehold (yt) is
reversible. That whole Gb reaction is reversible via strand displacement from right to
left, but the Gt reaction eventually `locks' the gate in the state where x is consumed
and y is produced. The annotation `a fresh' means that the domain a is not shared
by any other gate in the system to prevent interference (while of course the gate is
implemented as a population of identical copies that share that domain). In general,
we take all gate domains to be fresh unless they are non-history domains of input
or output signals. Abstractly, an x to y transduction is seen as a single step but the
implementation of x.y takes at least two steps, and hence has a di�erent kinetics than
a single-step process. This is a common issue in DNA encodings, but its impact can
be minimized [23], e.g. in this case by using a large Gt population.

In Figure 6 (cf. Figure 2 in [23]), we generalize the transducer to a 2-way fork
gate, x.[y, z], producing two output signals; this can be extended to n-way fork, via
longer trigger strands.

Many designs have been investigated for join gates [8]. The solution shown in
Figure 7 admits the coexistence of joins with the same inputs, [x, y].z | [x, y].z',
without disruptive crosstalk or preprocessing of the system (not all join gates have
this property). It is crucial for join to �re when both its inputs are available, but not
to absorb a �rst input while waiting for the second input, because the second input
may never come, and the �rst input may be needed by another gate (e.g., another join
with a third input). The solution is to reversibly bind the �rst input, taking advantage
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x | x.[y,z] → y | z
Gt

yt
⊥

xh

xt
⊥ xb

⊥ yt
⊥

xt xb
xh yt

0

yt

xb
⊥

xb

xt
⊥

xta

a⊥

zt

zt
⊥

zb a

a⊥

zt

zt
⊥

zb

a zt

a

a⊥

zt

zt
⊥

xh xt xb

x
xb yt yb

y

a fresh; xh generic

xt
⊥

xb

xb
⊥

Gb

yt

yt
⊥

a
zt zb

z

yb

Fig. 6. 2-way Fork

xt
⊥ xb

⊥ yt
⊥ yb

⊥ a⊥ b⊥ zt
⊥

xb yt yb a b zt
zb

Gb
xt

⊥ xb
⊥ yt

⊥ yb
⊥ a⊥ b⊥ zt

⊥

xb yt

yb a b ztxbxt
xh zb

r1

xt
⊥ xb

⊥ yt
⊥ yb

⊥ a⊥ b⊥ zt
⊥

yb a

b ztxbxt
xh zb

r2

ybyt

Gt
b zta

x | y | [x,y].z → z

a,b fresh; xh,yh generic

xh xt xb

x

yh yt yb

y

xt
⊥ xb

⊥ yt
⊥ yb

⊥ a⊥ b⊥ zt
⊥

xbxt
xh ybyt b zta

zbzt

z
b

0

yh

yh

Fig. 7. 2-way Join - core function

of chemical reversibility. Given two inputs x,y, a Gb backbone releases two strands
r1 ,r2, with r1 providing reversibility while waiting for y (cf. Figure 3 in [23]); the
trigger Gt �nally irreversibly releases the output z (or outputs).

xb
⊥ yt

⊥ c⊥ d⊥ yb
⊥ a⊥

d ybxb yt c

yb ar2

xb
⊥ yt

⊥ c⊥ d⊥ yb
⊥ a⊥

d yb

xb yt c yb a

r3

c d C2

xb
⊥ yt

⊥ c⊥ yb
⊥ a⊥

xb

yt c

yb a

r4

c

xb yt r1

xb
⊥ yt

⊥ c⊥ d⊥ yb
⊥ a⊥

xb

yb ac dxb yt

yt
⊥

c

c⊥ d⊥

yb

yb
⊥

C1

c

yt
⊥

c

c⊥

yt yb

d⊥

yb

yb
⊥

d

0

0 0
C3C4

c,d fresh

d

d⊥

Fig. 8. 2-way Join - cleanup

In a cleanup phase (Figure 8), o� the critical path, we use a similar C1 structure
(working from right to left) to remove r1 and r2 from the system, so that they do
not accumulate to slow down further join operations. This phase is initiated by the
release of r2, so we know by construction that both r1 and r2 are available. Therefore,
the r3 and r4 reversibility strands released by C1 can be cleaned up immediately by
C3,C4, ending a possible in�nite regression of garbage collections.

We now analyze some subtle interference issues that frequently arise in gate design.
In C1 the interposed c, d double strand has the purpose of separating yt from yb:
if omitted, a strand yt, yb would be released during garbage collection that would
function as a y signal and interfere with other gates. Instead, a strand d, yb is released
(and then collected by C3), and it is essential that d 6= yt to prevent interferences.
Similarly, yt, c is released (and then collected by C4) and it is essential that c 6= yb.
Hence, c and d have to be chosen fresh; in particular, it is not possible to identify all
the toeholds in a system: the d toeholds must be distinct from signal toeholds. Further,
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x1t
⊥ x1b

⊥ xnt
⊥ xnb

⊥ t⊥ y1h
⊥ y1t

⊥

x1b xnt xnb t y1h y1t
Gb

ymh
⊥ ymt

⊥

ymh ymt
ymb

Gty1ht ymh ymty1t

x1b
⊥ xnt

⊥ cnb
⊥ cnt

⊥ xnb
⊥ t⊥

cnt xnbx1b xnt cnb

cnb cnt

cnt
⊥

xnb

xnb
⊥xnt

⊥

cnb

cnb
⊥

[x1,..,xn].[y1,..,ym]

x1t x1b
x1h

x1

xnt xnb
xnh

xn

y1 ym

x1h,..,xnh generic

t,y1h,..,ymh fresh

c2t,c2b,…,cnt,cnb fresh

y1b

Gc

Fig. 9. n×m gate

the strand xb, yt is released from Gb and is absorbed by C1; this is �ne because xb, yt
cannot function as a signal. However, no other signal in the whole system should have
history xb and toehold yt, because it would be absorbed here. We should make sure,
therefore, that all output signals have fresh history domains. The gates in Figures 5
and 6 violate this requirement by releasing an output whose history domain comes
from the input, and therefore con�ict with this join design: a solution is given next
that also provides for general n × m gates. Finally, the Gb and C1 structures are
chained via the toehold a, which must be unique to each join gate.

x1t
⊥ x1b

⊥ t⊥ y1h
⊥ y1t

⊥

x1b t y1h y1t

Gb

Gt

y1ht y1t

t⊥

x1t x1b
x1h

x1

y1

x1h generic

t,y1h fresh

y1b

Gc

x1b
⊥

x1b

Fig. 10. 1× 1 gate

It is possible to implement a 3-way join from 2-way joins and an extra signal x0,
but this encoding `costs' a population and contains a divergent trace: [x1, x2, x3].x4 ,
([x1, x2].x0 | x0.[x1, x2])∗ | [x0, x3].x4 . Therefore, the strand algebra includes general
n-way joins. Figure 9 describes a gates design that generalizes the 2-way join gate to
a gate with n inputs and m outputs (in the garbage collection structures, ci ranges
from 2 to n). It has a single backbone where all the inputs are reversibly received,
after which a trigger strand irreversibly releases all the outputs.

Special cases of this n×m gate therefore include a 1×1 transducer and a 1×2 fork:
the 1 × 1 special case is shown in Figure 10. In contrast to the corresponding gates
of Figures 5 and 6, the 1 × m gates generate some garbage (x1, t) that is however
immediately collected. Moreover, all the output signals are released by the trigger
strand, and we can make sure that the history domains of released signals are all
fresh. Therefore, e.g., 1 × 1 and 1 × 2 gates no longer interfere with the garbage
collection of 2× 1 gates.

This completes the implementation of strand algebra in DNA. For the purposes of
the next section, however, we consider also curried gates (gates that produce gates).
Figure 11 shows a gate x.H(y) accepting a signal x and activating the backbone Hb of
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xt
⊥

xb

xb
⊥

a,b fresh; xh generic

x | x.H(y) → H(y)

xh xt xb

x

ytGb a

a⊥

b

b⊥

xt
⊥

xt
xh

xb
⊥

xb

a⊥

a b
G1

ytb

b⊥

xb a

xt
⊥

xt
xh

xb
⊥

xb

b yt

b⊥

ba

a⊥

xb
⊥

xb

a⊥ b⊥

b

yt
⊥xb

⊥

xb a

a⊥

xb

0 b⊥

b yt

yt

b

0

yt
⊥

Hb

yt
⊥

Hb

yt
⊥

Hb

Fig. 11. Curried Gate

a gate H(y), where H(y) can be any gate with initial toehold y⊥t , including another
curried gate. For example, if H(y) is a transducer y.z as in Figure 5, we obtain a
curried gate x.y.z such that x | x.y.z → y.z. The interposed a, b domains prevent the
release of a strand xb, yt that would interfere with r1 of [x, y].z in Figure 7.

4 Nested Strand Algebra

The purpose of this self-contained section is to allow nesting of join/fork operators, so
that natural compound expressions can be written. We provide a uniform translation
of this extended language back to the combinatorial strand algebra P , as a paradigm
for the compilation of higher level languages to DNA strands.

Consider a simple cascade of operations, ?x1.!x2.?x3, with the meaning of �rst
taking an input (`?') x1, then producing an output (`!') x2, and then taking an input
x3. This can be encoded as follows:

?x1.!x2.?x3 , x1.[x2, x0] | [x0, x3].[]

where the right hand side is a set of P combinators, and where x0 can be chosen
fresh so that it does not interfere with other structures (although it will be used by
all copies of ?x1.!x2.?x3).

The nested algebra nP admits such nesting of operators in general. The main
change from the combinatorial P algebra consists in allowing syntactic nesting after
an input or output pre�x. This has the consequence that populations can now be
nested as well, as in ?x.(P ∗). The new syntax is:

P ::= x | ?[x1, .., xn].P | ![x1, .., xn].P | 0 | P1|P2 | P ∗ n ≥ 1

Here ![x1, .., xn].P spontaneously releases x1, .., xn into the solution and continues
as P , while ?[x1, .., xn].P extracts x1, .., xn from the solution (whenever they are all
available) and continues as P . The mixing relation is the same as in P. The reaction
relation is modi�ed only in the gate rule:

?[x1, .., xn].P | x1 | .. | xn → P input gate (e.g.: ?x.0 | x→ 0)
![x1, .., xn].P → x1 | .. | xn | P output gate (e.g.: !x.0→ x | 0)

Note that ?
! [...].x can always be replaced by ?

! [...].!x.0, but x is kept in the syntax
for convenience in expressing the reaction rules.

We now show how to compile nP to P. Let Z be an in�nite lists of distinct signals,
and F be the set of such Z. Let Zi be the i-th signal in the list, Z≥i be the list starting
at the i-th position of Z, evn(Z) be the even elements of Z, and odd(Z) be the odd
elements. Let FP be the set of those Z ∈ F that do not contain any signal that occurs
in P . The unnest algorithm U(P )Z , for P ∈ nP and Z ∈ FP , is shown in De�nition
6. The inner loop U(z, P )Z uses z as the trigger for activating the translation of P .
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De�nition 6. Unnest Algorithm

U(P )Z , Z0 | U(Z0, P )Z≥1

U(z, x)Z , z.x

U(z, ?[x1, .., xn].P )Z , [z, x1, .., xn].Z0 | U(Z0, P )Z≥1

U(z, ![x1, .., xn].P )Z , z.[x1, .., xn,Z0] | U(Z0, P )Z≥1

U(z, 0)Z , z.[]

U(z, P ' | P �)Z , z.[Z0,Z1] | U(Z0, P ')evn(Z≥2) | U(Z1, P �)odd(Z≥2)

U(z, P ∗)Z , (z.[Z0, z] | U(Z0, P )Z≥1
)∗

For example, the translations for ?x1.![x2, x3].?x4.0 and ?x1.(x
∗
2) are:

U(?x1.![x2, x3].?x4.0)Z = Z0 | [Z0, x1].Z1 | Z1.[x2, x3,Z2] | [Z2, x4].Z3 | Z3.[]
U(?x1.(x∗2))Z = Z0 | [Z0, x1].Z1 | (Z1.[Z2,Z1] | Z2.x2)

∗

In ?x1.(x
∗
2), activating x1 once causes a linear production of copies of x2. For

an exponential growth of the population one should change U(z, P ∗)Z to produce
(z.[Z0, z, z] | U(Z0, P ')Z≥1

)∗.
In the nested algebra we can easily solve systems of recursive de�nitions; for ex-

ample, this recursive de�nition of X and Y processes:

X = (?x1.X | !x2.Y )
Y = ?x3.(X | Y )

can be rewritten systematically as the following single term, where the X,Y `pro-
cesses' are replaced by ordinary signals:

(?X.(?x1.X | !x2.Y ))∗ |
(?Y.?x3.(X | Y ))∗

As an example of an nP program, consider a co�ee vending machine controller,
Vend, that accepts two coins for co�ee. An ok is given after the �rst coin and then
either a second coin (for co�ee) or an abort (for refund) is accepted:

Vend = ?coin.![ok ,mutex ].(Co�ee | Refund)
Co�ee = ?[mutex ,coin].!co�ee.(Co�ee | Vend)
Refund = ?[mutex ,abort ].!refund .(Refund | Vend)

Each Vend iteration spawns two branches, Co�ee and Refund, waiting for either
coin or abort. The branch not taken in the mutual exclusion is left behind; this could
skew the system towards one population of branches. Therefore, when the Co�ee
branch is chosen and the system is reset to Vend, we also spawn another Co�ee
branch to dynamically balance the Refund branch that was not chosen; conversely for
Refund.

5 Stochastic Strand Algebra

Stochastic strand algebra is obtained by assigning stochastic rates to gates, and by
dropping the unbounded populations, P ∗, which do not have a well-de�ned stochastic
meaning; instead we write P k as an abbreviation for k parallel copies of P , with
P 0 = 0.

We assume that all gates with the same number n of inputs have the same stochas-
tic rate gn, collapsing all the gate parameters into a single e�ective parameter (the
binding strengths of all toeholds of the same length are comparable [25]). Therefore,
in this section [x1, .., xn].[y1, .., ym] represents stochastic gates of rate gn. Although
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gate rates are �xed for each n, we can vary population sizes in order to di�erentiate
macroscopic rates. We add two new �avors of gates: curried gates and persistent gates.

The curried gates described in Figure 11, when extended to multiple inputs and
outputs in the style of Figure 9, imply that there is an extension of strand algebra
with gates of the form

G ::= 0 | [x1, .., xn].[y1, .., ym, G]

where one of the outputs is another gate. In the combinatorial strand algebra, this
extension can be encoded by setting, e.g., x.y.z = [x].[[y].[z, 0]] , x.w | [w, y].z for a
fresh w. But stochastically the encoding does not preserve rate behavior; therefore,
in this stochastic strand algebra we take curried gates as primitive, implemented as
in Figure 11: they will play a special role below.

We also add persistent gates G= (with 0= = 0). These gates have the same stochas-
tic rate gn as G, but are not consumed when used. Through them we can recover the
role of P ∗ for implementing unbounded recursion, by usingG=k , (G=)k as a constant
gate population of size k. Persistent gates can be encoded, up to an arbitrary precision,
by regular gates that are bu�ered so that they are automatically replenished whenever
used. We discuss the approximate implementation below, but for convenience we take
persistent gates as primitive.

Terms of stochastic strand algebra therefore consists of strands, gates (null, cur-
ried, and persistent), and parallel composition of subsystems.

De�nition 7. Syntax of Stochastic Strand Algebra

G ::= 0 | [x1, .., xn].[y1, .., ym, G] n ≥ 1,m ≥ 0
P ::= x | G | G= | P | P

The semantics of stochastic strand algebra is given by the continuous time Markov
chain (CTMC) denoted by each term. A state of the Markov chain is a normalized term
P † of the form x1 | .. | xn | 0 | G1 | .. | Gm | G'=1 | .. | G'

=
p , which is obtained from

P by removing any repeated 0 terms and by lexicographically sorting the remaining
terms. We write P †.i for the i-th item in P †, and P †\i1..in for the state obtained by
removing the terms P †.i1, .., P

†.in.
A labeled transition is a 4-tuple written l : P † ⇀r Q† , where l is a label (from

some index set), r is a rate (a positive real), P † is the initial state, and Q† is the
�nal state. A set of labeled transitions is a 4-place relation R; let states(R) be the
set of states that occur in R. The CTMC of a term P is obtained by de�ning the set
of immediate transitions Next(P ) of P , and closing that set over further transitions
to obtain the Labeled Transition Graph (LTG) Ψ of P . The labels in Ψ distinguish
di�erent ways of reaching one state from another, to properly account for multiplicity
of transitions. The continuous time Markov chain CTMC(Ψ) is �nally obtained by
collapsing all the transitions between two states and summing their rates, and also
removing self-transitions. The CTMC is therefore a rate-weighted graph with states
for nodes and with global transitions of the form P † ⇀r Q† with P † 6= Q† for arcs.
From such a graph Ψ, we can easily extract the transition matrix T of a continuous
time Markov chain as normally presented, by setting Tij = r if i 6= j and i ⇀r j ∈ Ψ,
and Tii = �

∑
j 6=i Tij .

De�nition 8. Labeled Transition Graph (LTG)
A labeled transition graph is a set of transitions (quadruples) l : P † ⇀r Q† where

l is from an index set, r is a positive real, and P †, Q† are states.

De�nition 9. Continuous Time Markov Chain (CTMC) of an LTG
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Let Ψ be a labeled transition graph. Then: CTMC(Ψ) =
{P ⇀r Q | (∃ l : P ⇀s Q ∈ Ψ. P 6= Q) ∧ r =

∑
ri s.t. li : P ⇀ri Q ∈ Ψ}

The transition semantics simply states that each gate consumes its inputs and pro-
duces its outputs, and is itself consumed unless it is a persistent gate; the labels are
�nite sets of integers:

De�nition 10. Semantics of Stochastic Strand Algebra
Next(P ) =
{({p1, .., pn, q} : P † ⇀gn Q†) | P †.pi = xi ∧ pi distinct (i ∈ 1..n) ∧
P †.q = [x1, .., xn].[y1, .., ym, G] ∧Q = (P †\p1, .., pn, q | y1 | .. | ym | G)} ∪
{({p1, .., pn, q} : P † ⇀gn Q†) | P †.pi = xi ∧ pi distinct (i ∈ 1..n) ∧
P †.q = [x1, .., xn].[y1, .., ym, G]

= ∧Q = (P †\p1, .., pn | y1 | .. | ym | G)}
LTG(P ) =

⋃
nΨn

where Ψ0 = Next(P ) and Ψn+1 =
⋃
{Next(Q) | Q ∈ states(Ψn)}

For example, if P = xn | ym | ([x, y].z)p, then Next(P ) = {{i, j, k} : P † ⇀g2 Q† |
i ∈ 1..n, j ∈ n+1..n+m, k ∈ n+m+1..n+m+p, and Q = xn−1 | ym−1 | ([x, y].z)p−1
| z}. The �rst global transition in CTMC(LTG(P )) is then P † ⇀n×m×p×g2 Q†.
Instead, if P = xn | ([x, x].y)m, then Next(P ) = {{i, j, k} : P † ⇀g2 Q† s.t. i ∈ 1..n,
j ∈ 1..n, i 6= j, k ∈ n + 1..n + m, and Q = xn−2 | ([x, x].y)m−1 | y}. The �rst
global transition in CTMC(LTG(P )) is then P † ⇀(n×(n−1)/2)×m×g2 Q†. Note that
in all cases the rate of the global transition is equal to the gate rate multiplied by all
the possible ways of choosing inputs and gates that can react.

We next show how to approximate persistent gates G= by bu�ered gates G(X,k)

for a large k, using a technique based on curried gates. (It would be possible to
approximate persistent gates even with regular gates, but we would need to use an
n+1-input stochastic gate to approximate an n-input persistent gate, requiring further
assumptions on the relative rates of such gates.) Take:

G = [x1, .., xn].[y1, .., ym, H] any non-persistent gate

GX , [x1, .., xn].[X, y1, .., ym, H] for any signal X not occurring in G

G(X,k) , X | (X.GX)k using the curried gate X.GX = [X].[GX ]

Here k is the size of a bu�er population for GX , and X is the trigger that replen-
ishes the gate GX from the bu�er (we discuss a single persistent gate, but one can
similarly consider a persistent gate population that shares the same trigger). Consider
a context P that does not contain X, and suppose there is a reaction between G=

and signals in P , with global transition:

(G= | P )† ⇀p×gn (G= | Q)† with Q = y1 | .. | ym | H | P †\x1, .., xn
where p is the number of possible such reactions, and P †\x1, .., xn stands for the

appropriate index-based removal of the input signals. Let us now replace G= with
G(X,k). By interaction on X, which produces the only possible reaction out of G(X,k),
a �rst global transition is:

(G(X,k) | P )† = (X | (X.GX)k | P )† ⇀k×g1 ((X.GX)k−1 | GX | P )†

The previous reaction between G= and P now leads to a reaction between GX

and P :

((X.GX)k−1 | GX | P )† ⇀p×gn ((X.GX)k−1 | X | Q)† = (G(X,k−1) | Q)†

For arbitrarily large k, the combined rate of those two global transitions approxi-
mates p×gn, and the further reductions involving G(X,k−1) approximate those involv-
ing G(X,k), the only di�erence being the arbitrarily large interaction on X. Therefore,
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the transition (G= | P )† ⇀p×gn (G= | Q)† is approximated to an arbitrary precision
by the transition (G(X,k) | P )† ⇀p×gn (G(X,k) | Q)†. In this sense G(X,k) approxi-
mates G=.

For a chain of transitions, the initial k must be large enough to support the whole
chain, and if the chain is unbounded then the approximation will eventually fail;
that is, the bu�er will run out. However, it is possible to periodically replenish the
bu�er by external intervention: this can cause a major rate change, but only on the
X reactions that are arbitrarily fast, and does not disturb the rest of the system, or
more precisely, disturbs the interactions on GX arbitrarily little. The perturbation
on GX depends the size of k and on the frequency of re�lls; the latter cannot be
bounded and requires monitoring of the system. Still, this technique provides a prac-
tical way of implementing unbounded computation, by periodically `topping-up' the
bu�er populations. Also, in a sense, it emulates the stable conditions maintained in a
bioreactor.
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Fig. 12. Bu�ered Transducer

Figure 12 shows the structure of a bu�ered x.y transducer, implemented as the
curried gate X.x.[y,X], where the a, b domains and related garbage collection from
Figure 11 (which are generally needed to avoid interference on X) have been removed
under the assumption that X is private to this gate. Compare the dashed region with
the transducer from Figure 10: the extension to n ×m bu�ered gates is uniform, as
in Figure 9.

In the coarse-grain stochastic semantics of De�nition 10 we have assumed that each
gate performs a single e�ective transition from its inputs to its output, considering gn
as the `rate-limiting' step of a sequence of underlying chemical reactions. A �ne-grain
stochastic semantics can be given instead by directly emulating all the intermediate
species and the chemical reactions that are described in the �gures of Section 3. In
fact, such a �ne-grain semantics can be given by a formal translation into the chemical
process algebra of Introduction, assigning appropriate DNA structures to the species
and stochastic rates to the reactions. The �ne-grain semantics is not stochastically
equivalent to the coarse-grain semantics, because it makes �ner steps. Even just as a
nondeterministic semantics, it contains unbounded traces (due to reversibility) that
are not present in the coarse-grain semantics. However, the �ne-grain semantics can be
engineered to approximate the coarse-grain semantics, therefore providing an accurate
chemical (DNA) implementation of the stochastic strand algebra. These techniques
have been developed in [23], where abstract chemical systems (akin to our abstract
strand algebra reactions) are implemented by concrete, �ner, chemical systems made
of DNA molecules, in such a way that the concrete chemical systems approximate
accurately the behavior of the abstract chemical systems.
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6 Expressiveness � Compiling to DNA

In this section we consider four equally expressive formalisms, and relate them:
stochastic strand algebra, �nite stochastic chemical systems [21], interacting automata
[5,7], and stochastic place-transition Petri nets. An interesting point is that, by the
connection between these systems, we can implement each of them in DNA by the
methods of Section 3.

6.1 Finite Stochastic Chemical Systems

A �nite stochastic chemical reaction network (SCRN) [22] is a �nite set of stochastic
chemical reactions of the form:

C = {ρj : Lhsj →rj Rhsj} for j ranging over a �nite set

where: ρj is a unique name for each reaction; Lhsj has the form X1+ ...+Xnj for
nj > 0 where X are chemical species; Rhsj has the form X1 + ...+Xmj for mj ≥ 0;
and rj is a positive real of dimension s−1 representing the number of reactions per
seconds (the rate of the reaction). A �nite stochastic chemical system (SCS) consists
of an SCRN, C, together with initial conditions, P , given as a �nite number of copies
(molecules) of each species, which are understood to exist within a given volume. We
write P † for the lexicographical ordering of a multiset of molecules P = X1+ ...+Xp.
If we assume that rj are rational numbers, then, without loss of generality, we can take
them to be integer numbers, because we can scale the physical dimension of the rj . The
kinetics of an SCS is given by its continuous time Markov chain, CTMC(LTG(C,P )),
de�ned similarly to De�nition 10, where the states are P † and the labels of the
transition graph are sets of indexes in P † and names of reactions:

De�nition 11. Semantics of Finite Stochastic Chemical Systems

Next(C,P ) =

{({p1, .., pn, ρ} : P † ⇀r Q†) | P †.pi = Xi ∧ pi distinct (i ∈ 1..n) ∧
(ρ : X1 + ..+Xn →r Y1, .., Ym) ∈ C ∧Q = P †\p1, .., pn + Y1 + ..+ Ym}

LTG(C,P ) =
⋃

nΨn

where Ψ0 = Next(C,P ) and Ψn+1 =
⋃
{Next(C,Q) | Q ∈ states(Ψn)}

An SCS can be translated to strand algebra by mapping each n-ary reaction of rate
r to a population of persistent gates of size r/gn. Here Parallel{ρ1 : P1, ..., ρn : Pn}
= P1 | ... | Pn (the ρi handle multiplicities), and Proc(X1 + .. +Xn) = X1 | ...
| Xn:

De�nition 12. From SCS to Stochastic Strand Algebra

Let (C,P ) be a Finite Stochastic Chemical System:

Strand(C) = Parallel{ρ : [X1, .., Xn].[Y1, .., Ym]=r/gn |
(ρ : X1 + ..+Xn →r Y1 + ..+ Ym) ∈ C}

Strand(C,P ) = Strand(C) | Proc(P )
Provided that, starting from rational rates, we have scaled the physical dimensions

of r and gn so that all r/gn are integer numbers.

Theorem 1. From SCS to Stochastic Strand Algebra

The semantics of an SCS (C,P ) and of its Stochastic Strand Algebra translation
Strand(C,P ) coincide: CTMC(LTG(C,P )) = CTMC(LTG(Strand(C,P )))
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Proof. By De�nitions 11 and 10, let a state in CTMC(LTG(C,P )) be P †; the corre-
sponding state in CTMC(LTG(Strand(C,P ))) is (Proc(P ) | Strand(C))†; note that
the lexicographical indexing of P † remains consistent in (Proc(P ) | Strand(C))† by
sorting strands before gates. By De�nition 12, for each transition {p1, .., pn, ρ} : P † ⇀r

Q† in LTG(C,P ) due to reaction ρ : X1+ ..+Xn →r Y1+ ..+Ym and molecules P †.pi,
there are r/gn copies of [X1, .., Xn].[Y1, .., Ym]= in Strand(C), and hence r/gn transi-
tions (Proc(P ) | Strand(C))† ⇀gn (Proc(Q) | Strand(C))† in LTG(Strand(C,P ))
due to strands Proc(P )†.pi. The contribution r of {p1, .., pn, ρ} : P † ⇀r Q† to transi-
tion from P † to Q† in CTMC(LTG(C,P )) is therefore matched by the contribution
r/gn × gn = r of ρ : [X1, .., Xn].[Y1, .., Ym]=r/gn to transitions from (Proc(P ) |
Strand(C))† to (Proc(Q) | Strand(C))† in CTMC(LTG(Strand(C,P ))).

Therefore, we can translate Finite Stochastic Chemical Systems to Stochastic Strand
Algebra while preserving their kinetics. With the further assumption that stochastic
strand algebra can be correctly implemented in DNA, we can then translate any
abstract chemical system to a concrete DNA-based chemical system, at least up to
the correct implementation of a �ne-grain stochastic semantics: see [23].

We have also shown that stochastic strand algebra is at least as expressive as SCS
(in fact, it is no more expressive, as discussed later). We have a particular use in
mind for Theorem 1; that is, as a stepping stone for the molecular implementation of
interacting automata, as discussed next.

6.2 Interacting Automata

Interacting automata [5,7] (a stochastic subset of CCS [15]) are �nite state automata
that interact with each other over synchronous stochastic channels. An interaction
can happen when two automata choose the same channel cr, with rate r, one as
input (?cr) and the other as output (!cr). As a molecular analogy, these automata
represent stateful molecules that `collide' pairwise on complementary exposed surfaces
(channels) and change states as a result of the collision. Figure 13 shows two such
automata systems E1 and E2, where each diagram represents a population of identical
automata interacting with each other (and in general with other populations). For
example, in system E1, two automata in states A1 and B1 can either collide on
channel a at rate r by complementary interactions !a and ?a, and each move to state
A1, or (⊕) collide on channel b at rate s and each move to state B1 (see [4] for many
other examples).

A2 B2!ar

?bs

!bs

?ar

A1 B1!ar

?ar

?bs

!bsE1:

E2:

Fig. 13. Interacting Automata

In general, a system of interacting automata is given by a system E of equations
of the form X =M , where X is a species (an automaton state) and M is a molecule
(representing the transition table from state X).M has the form π1.P1⊕ . . . ⊕πn.Pn,
where ⊕ is stochastic choice among possible interactions, Pi are multisets of resulting
species, and πi are either delays τr, inputs ?cr , or outputs !cr on channel c at rate r.
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E1 : A1 = !ar.A1⊕?bs.B1 E2 : A2 = !ar.A2⊕?ar.B2

B1 = !bs.B1⊕?ar.A1 B2 = !bs.B2⊕?bs.A2

Figure 14 shows an example of a 3-state automaton that exhibits an interesting
kinetics: a Gillespie simulation of 1500 such automata (with given initial conditions,
and r = 1.0) produces an oscillation in the number of automata in a given state A,
B, or C. The corresponding equation system and its translation to strand algebra
(described in De�nition 15) are:

A B

!ar

?cr?ar

!br
?br

C

!cr

Fig. 14. Oscillator

A = !ar.A⊕?br.B ([A,B].[B,B])=r/g2 |
B = !br.B⊕?cr.C ([B,C].[C,C])=r/g2 |
C = !cr.C⊕?ar.A ([C,A].[A,A])=r/g2 |
A900 | B500 | C100 A900 | B500 | C100

The continuous time Markov chain semantics of [5] prescribes the possible transi-
tions ⇀p between automata states, with their propensities p. For example, consider
the systems E1 and E2 with initial conditions An

i | Bm
i ; that is, with n automata

in state Ai and m in state Bi. In E1 on channel ar the propensity of the transi-
tion to An+1

1 | Bm−1
1 is n × m × r, which is the number of possible binary interac-

tions multiplied by the channel rate. In E2 on channel ar, with two symmetric ?/!
ways for A2 to collide with A2, the propensity of the transition to An−1

2 | Bm+1
2 is

2× (n choose 2)× r = n× (n− 1)× r, which is again the number of possible binary
interactions multiplied by the channel rate:

An
1 | Bm

1 : (on ar) An
1 | Bm

1 ⇀n×m×r An+1
1 | Bm−1

1

(on bs) An
1 | Bm

1 ⇀n×m×s An−1
1 | Bm+1

1

An
2 | Bm

2 : (on ar) An
2 | Bm

2 ⇀n×(n−1)×r An−1
2 | Bm+1

2

(on bs) An
2 | Bm

2 ⇀m×(m−1)×s An+1
2 | Bm−1

2

Subsequent transitions from the new states are computed in the same way.
Interacting automata can be emulated in stochastic strand algebra, preserving

their possible transitions and propensities. This is achieved by a translation that
generates a binary join gate for each possible collision, choosing stable population sizes
that produce the prescribed rates. This translation can cause a quadratic expansion of
the representation [5], meaning that the translation is non-trivial, and that interacting
automata provide a more compact representation of a CTMC than either strand
algebra or chemical reactions. Achieving a linear translation is an open problem,
which likely requires an extension of the strand algebra. For example, if we had a
suitable choice operator in strand algebra, then the choice operator ⊕ of interacting
automata could be translated linearly to it, instead of by quadratically expanding all
possible interactions due to di�erent choices. It is not clear, though, how such a choice
operator could be de�ned.
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We recall the de�nitions of syntax and stochastic semantics from [5], where M.i
is the i-th summand in M , E.X is the M associated to X in E, and E.X.i refers to
the summand (E.X).i:

De�nition 13. Syntax of Interacting Automata

E ::= 0 | X =M,E Reagents (a list of reagents X =M)
M ::= 0 | π.P ⊕M Molecule (a list of interactions π.P )
P ::= 0 | X | P Solution (a list of species X)
π ::= τr | ?ar | !ar Interaction (delay, input, output)

De�nition 14. Semantics of Interacting Automata
Next(E,P ) =
{({m.X.i} : P † ⇀r Q†) | P †.m = X ∧ E.X.i = τr.R ∧Q = (P †\m | R)} ∪
{({m.X.i, n.Y.j} : P † ⇀r Q†) | P †.m = X ∧ P †.n = Y ∧m 6= n∧
E.X.i =?ar.R ∧ E.Y.j =!ar.S ∧Q = (P †\m,n | R | S)}

LTG(E,P ) =
⋃

nΨn

where Ψ0 = Next(E,P ) and Ψn+1 =
⋃
{Next(E,Q) | Q ∈ states(Ψn)}

Consider now the following translation from interacting automata to stochastic strand
algebra. The labeling accounts for multiplicities; a label is either a singleton �X.i� or
an ordered pair �X.i, Y.j�, where X.i are also ordered pairs.

De�nition 15. From Interacting Automata to Stochastic Strand Algebra
Strand(E) = Parallel(
{(�X.i� : X.[P ]=r/g1) | E.X.i = τr.P} ∪
{(�X.i, Y.j� : [X,Y ].[P,Q]=r/g2) | X 6= Y ∧ E.X.i =?ar.P ∧ E.Y.j =!ar.Q} ∪
{(�X.i,X.j� : [X,Y ].[P,Q]=2r/g2) | E.X.i =?ar.P ∧ E.X.j =!ar.Q})

Strand(E,P ) = Strand(E) | Proc(P )

The examples above, in particular, translate as follows, with P1 = Strand(E1) and
P2 = Strand(E2):

P1 = [B1, A1].[A1, A1]
=r/g2 | P2 = [A2, A2].[B2, A2]

=2r/g2 |
[A1, B1].[B1, B1]

=s/g2 [B2, B2].[A2, B2]
=2s/g2

Initial automata states are translated identically into initial signals and placed
in parallel. As described in Section 5, a strand algebra transition from global state
An | Bm | [A,B].[C,D]=p has propensity n×m×p×g2, and from An | [A,A].[C,D]=p

has propensity (n choose 2)× p× g2. From the same initial conditions An | Bm as in
the automata, we then obtain the global strand algebra transitions:

An
1 | Bm

1 | P1 ⇀n×m×r/g2×g2 An+1
1 | Bm−1

1 | P1

An
1 | Bm

1 | P1 ⇀n×m×s/g2×g2 An−1
1 | Bm+1

1 | P1

An
2 | Bm

2 | P2 ⇀(n×(n−1))/2×2r/g2×g2 An−1
2 | Bm+1

2 | P2

An
2 | Bm

2 | P2 ⇀(m×(m−1))/2×2s/g2×g2 An+1
2 | Bm−1

2 | P2

which have the same propensities and corresponding states as the interacting au-
tomata transitions. In general, we obtain that interacting automata can be translated
faithfully:

Theorem 2. From Interacting Automata to Stochastic Strand Algebra
The semantics of interacting automata and of their translation to stochastic strand

algebra coincide: CTMC(E,P ) = CTMC(Strand(E,P )).
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Proof. We blur over the syntactic di�erences between �|� in interacting automata and
strand algebra expression, and �+� in chemical expression, assuming they are con-
verted as appropriate. The following translation Ch(E,P ) from interacting automata
(E,P ) to Finite Stochastic Chemical Systems Ch(E), P is such that CTMC(Ch(E,P ))
= CTMC(E,P ) ([5], Theorem 3.4-2):

Ch(E) =
{(�X.i� : X →r P ) | E.X.i = τr.P} ∪
{(�X.i, Y.j� : X + Y →r P +Q) | X 6= Y ∧ E.X.i =?ar.P ∧ E.Y.j =!ar.Q} ∪
{(�X.i,X.j� : X +X →2r P +Q) | E.X.i =?ar.P ∧ E.X.j =!ar.Q}

By Theorem 1 CTMC(Strand(Ch(E,P )) = CTMC(Ch(E,P )). Therefore we
obtain that CTMC(Strand(Ch(E,P )) = CTMC(E,P ); that is, there is a transla-
tion Strand(Ch(E,P )) from interacting automata to stochastic strand algebra that
preserves the CMTC semantics. By composing Strand(C,P ) from De�nition 12 with
Ch(E,P ) form above, we obtain Strand(E,P ) as in De�nition 15.

6.3 Petri Nets

A place-transition Petri net (the simplest kind of Petri nets [18]) has places marked
with a number of tokens, and transitions between n incoming and m outgoing places
that �re when all the incoming places have at least one taken, which is removed,
and a token is then added to each outgoing place. Consider a place-transition Petri
Net with places xi; then, a transition with incoming arcs from places x1..xn and
outgoing arcs to places y1..ym is represented in the combinatorial strand algebra
as ([x1, .., xn].[y1..ym])∗, where an unbounded population of gates ensures that the
transition can �re repeatedly. The initial token marking x1, .., xk (a multiset of places)
is represented as x1 | .. | xk. Conversely, a signal in strand algebra can be represented
as a marked place in a Petri net, and a gate [x1, .., xn].[y1..ym] as a transition with
an additional marked `one-shot' place on the input that makes it �re only once; then,
P ∗ can be represented by connecting the transitions of P to refresh the one-shot
places (this was suggested by Cosimo Laneve). Therefore, the combinatorial strand
algebra is equivalent to place-transition Petri nets, with strand algebra providing a
compositional language for describing such nets.

[p1,p2].[p3,p4,G]

p1 p2

p3 p4

[p1,p2].[p3,p4]=

p1 p2

p3 p4

G

g2g2

Fig. 15. Stochastic Petri Nets

We are interested here speci�cally in the translation from stochastic strand algebra
to stochastic nets (which are just nets with rates on transitions and with an induced
CTMC semantics). In this case, we can translate signals as marked places, as above,
and gates as transitions with associated rates. In the stochastic version we do not
have P ∗ to handle any more: just multisets of gates, but including persistent and
curried gates. Figure 15 shows the translation by two general examples: on the left, a
curried gate with a one-shot place, where the continuation gate G (if any) is activated
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by a connecting place; on the right, a persistent gate as a normal transition, where a
continuation gate (not shown) can be handled as on the left.

6.4 Equivalences

We have seen that interacting automata can be represented in stochastic strand al-
gebra (Section 6.2) via SCS (Section 6.1), and that stochastic strand algebra can be
represented as stochastic place-transition nets (Section 6.3). The latter can be easily
represented as SCS where each transition corresponds to a chemical reaction [23,7].
Finally, SCS can be represented as interacting automata [5].

Therefore, all these formal systems are equivalent, and by the techniques of Section
3 they can all be compiled to DNA. Moreover, the compilation technique is uniform,
through the common connection to strand algebra.

The computational power of this class of systems is well characterized. For the
nondeterministic case, many questions about reachable con�gurations in Petri nets
are decidable [18], and therefore this class of systems is not Turing-complete. Still, this
class is widely used and studied, due to the analysis of concurrency that come from the
theories of Petri nets and Process Algebra, and somewhat separately from the theory
of Distributed Systems. As for the latter, a computation in this class can be seen as a
population protocol by de�ning a predicate over con�gurations that always becomes
stable under fair executions [1]; the predicates that are stably computable this way
coincide with the predicates over initial states expressible in Presburger arithmetic,
which is again a decidable class. The fairness assumption of population protocols
matches abstractly the probabilistic fairness implicit in stochastic systems, and the
assumption that all agents can interact match the chemical assumption of well-mixing.
It has been shown that Turing machines can be emulated up to an arbitrarily small
error [1,22], and these results have been transferred to Process Algebra [27].

7 Contributions and Conclusions

We have introduced strand algebras: formal languages based on a simple relational
semantics that are equivalent to place-transition Petri nets, but allow for composi-
tional descriptions where each component maps directly to DNA structures. Strand
algebras connect a simple but powerful class of DNA system to a rich set of tech-
niques from process algebra for studying concurrent systems: such techniques will be
required in the veri�cation and optimization of DNA-based computing architectures,
where many subtle interactions may occur. Detailed analysis of system kinetics re-
quires the introduction of quantitative parameters; to this end we have described a
stochastic strand algebra and a technique for maintaining stable bu�ered populations
to support inde�nite and unperturbed computation in a stochastic setting. Using
strand algebra as a stepping stone, we have described a DNA implementation of in-
teracting automata that preserves stochastic behavior. Interacting automata are one
of the simplest process algebras in the literature. Hopefully, more advanced process
algebra operators will eventually be implemented as DNA structures, and conversely
more complex DNA structures will be captured at the algebraic level, leading to more
expressive concurrent languages for programming molecular systems.

Within the strand algebra framework, beyond the speci�c algebras we have pre-
sented, it is easy to add operators for new DNA structures, and to map existing op-
erators to alternative DNA implementations. We have also shown how to use strand
algebra as an intermediate compilation language, by giving a translation from a more
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convenient expression-based syntax. However, the goal of �compiling high-level lan-
guages to DNA�, is clearly not yet ful�lled. Above the level of strand algebra we have
available a number of circuit abstractions (the ones discussed in Section 6 and possibly
many others), but there are no clear candidates for high-level programming languages
tailored to DNA nanosystems. Below the level of strand algebra there is an increasing
number of structural description languages [16] and thermodynamic analysis tools
[10], but the process of reliably producing DNA nanosystems from general structural
descriptions is still being worked out.

I would like to acknowledge the Molecular Programming groups at Caltech and
U.Washington for invaluable discussions and corrections. In particular, join and cur-
ried gate designs were extensively discussed with Lulu Qian, David Soloveichik and
Erik Winfree [8]. A preliminary version of this paper appeared as reference [6].
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